یادگیری ماشینی میتواند به پردازش دادههای پزشکی کمک کند و به متخصصان پزشکی بینشهای مهمی بدهد، نتایج سلامتی و تجربیات بیمار را بهبود بخشد.
چگونه از هوش مصنوعی در پزشکی استفاده می شود؟
هوش مصنوعی در پزشکی استفاده از مدلهای یادگیری ماشینی برای جستجوی دادههای پزشکی و کشف بینشها برای کمک به بهبود نتایج سلامت و تجربیات بیمار است. به لطف پیشرفت های اخیر در علوم کامپیوتر و انفورماتیک، هوش مصنوعی (AI) به سرعت ،به بخشی جدایی ناپذیر از مراقبت های بهداشتی مدرن تبدیل می شود. الگوریتمهای هوش مصنوعی و سایر برنامههای کاربردی مجهز به هوش مصنوعی برای حمایت از متخصصان پزشکی در محیطهای بالینی و تحقیقات در حال انجام استفاده میشوند.
در حال حاضر، رایج ترین نقش های هوش مصنوعی در تنظیمات پزشکی، پشتیبانی تصمیم گیری بالینی و تجزیه و تحلیل تصویربرداری است. ابزارهای پشتیبانی تصمیم بالینی به ارائهدهندگان کمک میکنند تا با فراهم کردن دسترسی سریع به اطلاعات یا تحقیقات مرتبط با بیمار، درباره درمانها، داروها، سلامت روان و سایر نیازهای بیمار تصمیمگیری کنند. در تصویربرداری پزشکی، ابزارهای هوش مصنوعی برای تجزیه و تحلیل سی تی اسکن، اشعه ایکس، ام آر آی و سایر تصاویر برای ضایعات یا سایر یافتههایی که ممکن است رادیولوژیست انسانی از دست بدهد، استفاده میشود.
چالشهایی که همهگیری برای بسیاری از سیستمهای بهداشتی ایجاد کرد، همچنین بسیاری از سازمانهای مراقبتهای بهداشتی در سراسر جهان را به آزمایش میدانی فناوریهای جدید پشتیبانی شده از هوش مصنوعی، مانند الگوریتمهای طراحیشده برای کمک به نظارت بر بیماران و ابزارهای مجهز به هوش مصنوعی برای غربالگری همه گیری بیماران سوق داد.
تحقیقات و نتایج این آزمایش ها هنوز در حال جمع آوری است و استانداردهای کلی برای استفاده از هوش مصنوعی در پزشکی هنوز در حال تعریف است. با این حال، فرصتهای هوش مصنوعی برای بهرهمندی از پزشکان، محققان و بیمارانی که به آنها خدمات میدهند به طور پیوسته در حال افزایش است. در این مرحله، تردید کمی وجود دارد که هوش مصنوعی به بخش اصلی سیستمهای سلامت دیجیتالی تبدیل خواهد شد که پزشکی مدرن را شکل داده و از آن پشتیبانی میکند.
کاربردهای هوش مصنوعی در پزشکی
روشهای متعددی وجود دارد که هوش مصنوعی میتواند تأثیر مثبتی بر عملکرد پزشکی داشته باشد، چه از طریق افزایش سرعت تحقیقات یا کمک به پزشکان در تصمیمگیری بهتر.در اینجا چند نمونه از نحوه استفاده از هوش مصنوعی آورده شده است:
هوش مصنوعی درتشخیص بیماری
برخلاف انسان ها، هوش مصنوعی هرگز نیازی به خواب ندارد. مدلهای یادگیری ماشینی را میتوان برای مشاهده علائم حیاتی بیمارانی که مراقبتهای ویژه دریافت میکنند و در صورت افزایش عوامل خطر خاص به پزشکان هشدار داد. در حالی که دستگاههای پزشکی مانند مانیتورهای قلب میتوانند علائم حیاتی را ردیابی کنند، هوش مصنوعی میتواند دادههای آن دستگاهها را جمعآوری کند و به دنبال شرایط پیچیدهتری مانند سپسیس باشد. یکی از مشتریان IBM یک مدل هوش مصنوعی پیشبینیکننده برای نوزادان نارس ایجاد کرده است که 75 درصد در تشخیص سپسیس شدید دقت دارد.
در سامانه تله ویزیت، بصورت آنلاین توسط
دکتر فاطمه نعمت اللهی ویزیت شوید. جهت تله ویزیت روی لینک زیر کلیک کنید.
درمان شخصی بیماری
پشتیبانی از پزشکی دقیق با کمک هوش مصنوعی مجازی آسانتر میشود. از آنجایی که مدلهای هوش مصنوعی میتوانند اولویتها را یاد بگیرند و حفظ کنند، هوش مصنوعی این پتانسیل را دارد که توصیههای بیدرنگ سفارشیسازی شده را در تمام ساعات شبانهروز به بیماران ارائه دهد. به جای اینکه هر بار اطلاعات را با یک فرد جدید تکرار کند، یک سیستم مراقبت های بهداشتی می تواند به بیماران دسترسی شبانه روزی به یک دستیار مجازی مجهز به هوش مصنوعی را ارائه دهد که می تواند به سوالات بر اساس تاریخچه پزشکی، ترجیحات و نیازهای شخصی بیمار پاسخ دهد.
هوش مصنوعی در تصویربرداری پزشکی
هوش مصنوعی در حال حاضر نقش برجسته ای در تصویربرداری پزشکی ایفا می کند. تحقیقات نشان داده است که هوش مصنوعی با استفاده از شبکه های عصبی مصنوعی می تواند به اندازه رادیولوژیست های انسانی در تشخیص علائم سرطان سینه و همچنین سایر شرایط موثر باشد. علاوه بر کمک به پزشکان در تشخیص علائم اولیه بیماری، هوش مصنوعی همچنین میتواند با شناسایی بخشهای حیاتی از تاریخچه بیمار و ارائه تصاویر مربوطه به آنها، تعداد خیرهکننده تصاویر پزشکی را که پزشکان باید پیگیری کنند، قابل کنترلتر کنند.
کارایی کارآزمایی بالینی
زمان زیادی در طول آزمایشهای بالینی صرف اختصاص کدهای پزشکی به نتایج بیمار و بهروزرسانی مجموعه دادههای مربوطه میشود. هوش مصنوعی میتواند با ارائه جستجوی سریعتر و هوشمندانهتر برای کدهای پزشکی به سرعت بخشیدن به این فرآیند کمک کند. دو مشتری IBM Watson Health اخیرا دریافتند که با هوش مصنوعی، میتوانند تعداد جستجوهای کد پزشکی خود را تا بیش از 70 درصد کاهش دهند.
رشد سریع داروها
کشف دارو اغلب یکی از طولانی ترین و پرهزینه ترین بخش های توسعه دارو است. هوش مصنوعی می تواند به کاهش هزینه های توسعه داروهای جدید در درجه اول از دو طریق کمک کند: ایجاد طرح های دارویی بهتر و یافتن ترکیب های دارویی نویدبخش! با هوش مصنوعی، می توان بر بسیاری از چالش های کلان داده پیش روی صنعت علوم زیستی غلبه کرد.
در سامانه تله ویزیت، بصورت آنلاین توسط
دکتر سیروس مومن زاده ویزیت شوید. جهت تله ویزیت روی لینک زیر کلیک کنید.
مزایای هوش مصنوعی در پزشکی
مراقبت از بیمار آگاهانه
ادغام هوش مصنوعی پزشکی در گردش کار پزشکان می تواند زمینه ارزشمندی را در حالی که ارائه دهندگان در حال تصمیم گیری در مورد مراقبت هستند فراهم کند. یک الگوریتم یادگیری ماشینی آموزشدیده میتواند با ارائه نتایج جستجوی ارزشمند به پزشکان با بینشهای مبتنی بر شواهد در مورد درمانها و روشها در حالی که بیمار هنوز در اتاق با آنها است، به کاهش زمان تحقیق کمک کند.
کاهش خطا
شواهدی وجود دارد که نشان می دهد هوش مصنوعی می تواند به بهبود ایمنی بیمار کمک کند. یک بررسی سیستمی اخیر از 53 مطالعه بررسی شده که تأثیر هوش مصنوعی بر ایمنی بیمار را بررسی میکرد، نشان داد که ابزارهای پشتیبانی تصمیمگیری مبتنی بر هوش مصنوعی میتوانند به بهبود تشخیص خطا و مدیریت دارو کمک کنند.
کاهش هزینه های مراقبت
راه های بالقوه زیادی وجود دارد که هوش مصنوعی می تواند هزینه ها را در سراسر صنعت مراقبت های بهداشتی کاهش دهد. برخی از امیدوارکنندهترین فرصتها عبارتند از کاهش خطاهای دارویی، کمک به سلامت مجازی سفارشی، پیشگیری از کلاهبرداری، و حمایت از جریان کار اداری و بالینی کارآمدتر.
افزایش تعامل پزشک و بیمار
بسیاری از بیماران خارج از ساعات کاری معمولی به سؤالات فکر می کنند. هوش مصنوعی میتواند به ارائه پشتیبانی شبانهروزی از طریق رباتهای چت کمک کند که میتوانند به سؤالات اساسی پاسخ دهند و زمانی که دفتر ارائهدهنده آنها باز نیست، منابعی را در اختیار بیماران قرار دهد. هوش مصنوعی همچنین میتواند بهطور بالقوه برای تریاژ سوالات و پرچمگذاری اطلاعات برای بررسی بیشتر مورد استفاده قرار گیرد، که میتواند به ارائهدهندگان در مورد تغییرات سلامتی که نیاز به توجه بیشتری دارند هشدار دهد.
ارائه ارتباط متنی
یکی از مزیت های اصلی یادگیری عمیق این است که الگوریتم های هوش مصنوعی می توانند از زمینه برای تمایز بین انواع مختلف اطلاعات استفاده کنند. برای مثال، اگر یک یادداشت بالینی شامل فهرستی از داروهای فعلی بیمار به همراه داروی جدیدی باشد که ارائهدهنده آنها توصیه میکند، یک الگوریتم هوش مصنوعی آموزشدیده میتواند از پردازش زبان طبیعی برای شناسایی داروهایی که در تاریخچه پزشکی بیمار تعلق دارند استفاده کند.
منبع: www.ibm.com
همچنین بخوانید:
شبکه کارشناسان سلامت دیجیتال
چشم پزشکی از راه دور چیست؟
بهترین فرصت های راه اندازی استارتاپ هوش مصنوعی در پزشکی